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Abstract
Background: Mixed reality (MR) simulation training is emerging in paramedical education as a way to practice responding
to stress-intensive scenarios like mass casualty incidents in a safe and controlled environment. Current training platforms,
however, lack real-time stress and human performance monitoring tools.
Objective: The study aims to enhance MR training for medical first responders through real-time evaluation of performance
and stress levels, leveraging biosignal monitoring and advanced analytics to allow instructors to tailor feedback and maintain
optimal challenge and safety levels.
Methods: The study includes a structured, multiphase approach including initial requirement gathering (structured interviews
and cocreation workshops), an online design survey, iterative prototype development, and a field trial (including training
observations and interviews). Data were collected from 5 end user consortium members across Europe. Quantitative data from
checklists were analyzed using frequencies and percentages to understand feature usage and event occurrences. Qualitative
data from semistructured interviews and cocreation workshops were transcribed, coded, and subjected to thematic analysis to
identify patterns and insights into the usability and effectiveness of the enhanced features in the MR training.
Results: The study identified a number of requirements that medical first responders have for an MR training system,
including requirements not included in currently available solutions. A total of 80 performance metrics were initially identified
and refined to a set of 54 metrics, which were categorized into key performance indicator groups such as scene safety, triage
performance, and communication. Requirements for smart wearables to monitor stress levels are provided and highlight the
importance of a user-centered design process to provide users with effective tools that fit their needs. Stress visualization
preferences are described in the form of a dashboard as well as in virtual environments surrounding the avatar. Using an
iterative design process and user feedback, a training system was developed, integrating real-time performance tracking and
stress monitoring. The field trial provided insights into the practical use of these features during a real training exercise,
showed interaction preferences between trainer and trainees, and highlighted further improvement opportunities.
Conclusions: This research enhances MR training for paramedics by integrating real-time performance metrics and stress
indicators based on a human-centered design approach that aligns with end user needs, thereby laying the foundation for
developing more effective and immersive training solutions for high-stress professions.
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Introduction
Background
Medical first responders (MFRs) play a critical role in
saving lives and providing emergency care in challeng-
ing and stressful situations. The number of mass casualty
incidents (MCIs) has significantly increased in recent years
[1]. However, providing effective training for MFRs can
be a difficult task due to the complexity and unpredicta-
bility of emergency scenarios. Training methods for first
responders are still analog, with minimal presence of digital
and immersive technologies. For instance, the majority of
training continues to adhere to conventional exposition-style
instruction based on theories and examples presented in books
and presentations [2]. This type of training can improve
learning but primarily targets cognitive memory rather than
physical/muscle memory [3]. Since the majority of train-
ing and operations in the first responder industry adhere
to repetitive instructional designs and protocols, physical
memory is considered to be of utmost significance [4].

Extended reality (XR) simulation training provides the
opportunity to train a multitude of scenarios that capture all
training possibilities found within mass casualty or natu-
ral disaster events without the extensive resources needed
for real-life simulation training [5]. MFRs are offered new
training methods based on learning management systems and
XR training as a result of recent advancements in the field of
immersive technologies. Due to the service’s portability and
accessibility, XR learning management systems have been
found to improve student retention and engagement [6].

With an increased interest in XR simulation training,
which includes virtual reality (VR), augmented reality, and
mixed reality (MR) [7], the need emerges for novel train-
ing interfaces that offer real-time feedback and support for
both trainees and instructors. The possibility to digitalize
and automatically track training performance metrics as well
as psychophysiological metrics such as stress and cognitive
workload bring considerable advantages in terms of training
quality as well as efficiency. However, incorporating these
key performance indicators (KPIs) into XR training platforms
remains a relatively unexplored field in MFR training.
Objectives
This study aims to enhance MR training solutions for MFRs
by addressing the specific needs of end users and incorpo-
rating their iterative feedback throughout the development
process. By integrating real-time performance evaluation and
stress level monitoring through advanced KPIs and biosignal
analysis, this research seeks to optimize training outcomes.
The objective is to enable instructors to deliver feedback
based on objective data, ensuring a balanced approach that
maximizes both the challenge and safety of the training
experience. Through these innovations, the study aims to fill

existing gaps in MR training, ultimately improving prepared-
ness and response effectiveness in emergency scenarios.

The research addressed the following research questions:
Research question 1. What are the key performance

metrics in MR training that enable trainers to effectively
engage with and mentor MFR trainees?

Research question 2. How can stress level indicators be
integrated into an MR training platform tailored for MFRs?
Related Work
The application of XR technologies in emergency response
training has gained substantial interest in recent years [8-11].
These technologies offer a safe and controlled environment
for rehearsing emergency scenarios without the associated
risks [12,13]. Studies have demonstrated that XR training can
achieve performance outcomes on par with, if not superior
to, traditional training methods, making it a practical solution
for complex simulations like MCIs and triage [14-16]. Unlike
traditional large-scale exercises, which are resource-intensive
and logistically demanding, XR training has been shown to be
more cost-effective, though the initial investment in hardware
and software remains a consideration [17,18].

Although XR has the potential to transform health care
training [19], the research on its application for MFRs in
MCIs is still in its early stages, revealing both promising
results and notable limitations. Positive findings indicate
that XR simulations provide an immersive and engaging
experience [20], with participants reporting a heightened
sense of presence and increased confidence in their abil-
ities [21]. Studies comparing XR training to live sim-
ulations have found comparable efficacy in knowledge
acquisition, decision-making skills, and user satisfaction, with
no significant difference in the accuracy of triage decisions
between paramedic students trained using XR and those who
underwent live simulations [14,22]. Furthermore, XR offers
a cost-effective and safe environment for learning, enabling
repeated practice without real-world consequences [17,23].

Despite these benefits, a critical gap in the literature is
the integration of real-time performance monitoring within
MR training environments. Current studies primarily focus
on the immersive qualities of MR and its ability to mimic
real-world scenarios, often neglecting the necessity for
immediate performance feedback. Effective training requires
accurate and prompt evaluation of trainees’ actions, essen-
tial for ensuring that the skills acquired in virtual envi-
ronments transfer effectively to real-world emergencies.
Kirkpatrick’s model [24] suggests that evaluating training
effectiveness comprehensively requires assessing reaction,
learning, behavior, and results. Identifying specific, measur-
able, action-oriented, relevant, and timely KPIs is crucial
[25,26]. Baetzner et al [27] found that most MFR training
studies rely on an overall performance score, task completion
time, and decision accuracy as external measures. However,
self-reported metrics dominate these studies, underscoring the
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need for more objective evaluation methods since traditional
measures are prone to different biases [28]. As training
designs evolve and incorporate new technologies like XR,
it is critical to maintain rigorous evaluation methodologies to
ensure the transfer of training to real-world applications [29].
Digitalization of measurements in VR solutions presents an
exciting opportunity to integrate more nuanced and contin-
uous evaluation metrics, which can further enhance the
effectiveness of MFR training [30].

Given the high-pressure nature of MCIs, it is impera-
tive to incorporate the assessment of cognitive factors such
as stress in simulation training. Evaluating these factors
provides a holistic understanding of a trainee’s capacity
to perform under stress, ensuring that they are not only
technically proficient but also mentally resilient when faced
with real-world emergencies [31]. Previous studies showed
that high stress levels can impair cognitive functions crucial
for decision-making [32,33]. Simulation-based MR training
enables practical application within environments that mimic
the perceptual, motor, and cognitive demands of high-stress
situations [34,35].

Real-time measurement of stress in training environ-
ments presents unique challenges that differ significantly
from traditional posttraining subjective evaluations. Although
posttraining assessments often rely on self-reported data,
real-time stress assessment requires the integration of
physiological monitoring tools that can capture immediate
responses to stressors, offering a more objective view of
trainees’ stress levels [36,37]. Currently, biosignals such
as heart rate (HR), heart rate variability (HRV), electro-
dermal activity (EDA), blood pressure, respiratory rate,
and electroencephalography are commonly used for stress
measurement [38].

However, incorporating these biosignal measurements into
real-world training environments poses significant challenges.
Most research to date has been conducted in controlled lab
settings where participants’ movements are limited, mini-
mizing noise in the data [39]. In contrast, training environ-
ments that involve high levels of physical activity introduce
additional difficulties, as movement can introduce noise and
artifacts into biosignal recordings.

Despite the potential of these physiological markers,
achieving accuracy and reliability in real-time stress

measurements, especially in dynamic training environments,
remains a complex task [40]. The challenge lies in the
need for sensors that can reliably track these biosignals
during movement-intensive scenarios and the development of
algorithms capable of processing and interpreting data in real
time without introducing latency.

The visualization of physiological signals (ie, HR, HRV,
and breathing rate) is a key component in biofeedback
applications designed to help individuals understand and
manage their own stress levels [41]. Research on biosignal
visualization has shown that presenting physiological data
in an accessible, user-friendly format can enhance self-aware-
ness, allowing individuals to recognize stress responses
and use strategies to mitigate them [42]. However, limi-
ted research can be found about visualizing stress data for
third-party observers, such as trainers or supervisors, in a
way that is informative and actionable. Research on the
visualization of physiological data in XR is limited as well
and mainly involves investigating its influence on social
factors, such as social connections [43]. Further research
is needed to develop more sophisticated visualization tools
that can convey essential information quickly and discreetly,
enhancing the utility of real-time stress monitoring in training
contexts.

Methods
Overview
All studies described in this manuscript are part of the
Horizon 2020 project MED1stMR [44]. The goal of the
research project was to design an MR simulation training
system for MFRs that is based on the needs and preferences
of end users. This study focused specifically on enhancing
immersive training environments to improve performance
and stress measurement, as these were identified as critical
areas of concern by the consortium members. The method-
ology included a structured multiphased research structure
with a strong focus on human-centered design methods.
The research protocol included a phase for requirements
gathering, as well as iterative design and development and
evaluation, as shown in Figure 1.
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Figure 1. Research protocol: 3 phases and methods.

Recruitment
MFRs and trainers (also referred to as end users) were
recruited from the following consortium members to
participate in the studies: Servicio Madrileño de Salud,
Hellenic Rescue Team, Johanniter Österreich Ausbildung
und Forschung Gemeinnützige GmbH, Region Jämtland
Härjedalen, University Hospital Heidelberg, and Campus
Vesta, as well as external partner Sanitätspolizei Bern.

For the contextual interviews and cocreation workshops,
participants were recruited via email and word of mouth
between October and December 2021. The online survey was
distributed in January 2023, with each organization sending
an invitation link and a brief description of the study to their
MFRs.

For the field trial, participants were recruited through
Johanniter Österreich Ausbildung und Forschung Gemeinnüt-
zige GmbH from April to June 2023, using email and word of
mouth as the primary recruitment methods.
Requirements Gathering and Analysis
For the collection of end user requirements, contextual
interviews were held with 30 participants (16 female, 14
male) and 41 MFRs (19 female, 22 male) who contributed
to cocreation workshops (the interview guide was developed
with MFRs and research experts from the consortium and
can be found in Multimedia Appendix 1). The goal of the
cocreation workshops was to engage end users in the process
of scenario design and collect input regarding training goals
and features. Workshops included traditional and immersive
prototyping as Nguyen et al described in a separate study
comparing the 2 techniques [45].

As part of the structured interviews, participants were
asked to list the KPIs their organization is using to assess
trainees in real-life MCI training, including assessment
methods, rating scale (eg, categorical, numerical, checklist),
and time of assessment (during training or debriefing).

Upon completion of the interviews, all KPIs, along with
descriptions, were compiled into an Excel sheet (Multime-
dia Appendix 2) and categorized by assessment type (eg,
safety-related aspects, triage performance, application of
triage algorithms, treatment of patients, use of equipment,
and communication and coordination). The MoSCoW method
[46] was used to prioritize KPIs. This method rates each
item as must have (Mo), should have (S), could have (C),
or will not have (W). The single point of contact for each
end user organization coordinated with their team to complete
the ratings. In the next step, the technical development team
added information about feasibility and resource requirements
for each item in the list to get a better understanding about the
scope.

To receive input regarding the stress level indicator
specifications, participants were asked about their preferen-
ces regarding biosignal recording wearables (eg, chest strap,
smartwatches, sticky electrodes on the chest) and biosignals
to use for stress classification (eg, electrocardiogram [ECG],
EDA).
Design and Development
In the design phase, an agile development process [47]
was used to develop the MR system, including the sce-
nario editor; 2 scenarios; stressors; avatar appearance and
wounds; virtual medical tools; performance monitoring; and
debriefing tools. The initial requirements collected in phase
1 were transferred to the product backlog and development
was divided into manageable, incremental builds, allowing
for regular assessment and adaptation. Biweekly software
developer meetings were held to foster close collaboration
between developers and end users, ensuring that the evolving
needs and feedback of trainers and trainees were continually
integrated into the development process.

The technical development team was unclear about how
the stress level indicator should be visualized and what
level of information should be included; therefore, an online
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survey was conducted via the survey platform LimeSurvey.
Mock-ups were created based on best practice (eg, stress
indicator of smartwatches) and examples from the literature
[48,49] and presented to end users as still images in an online
survey (Multimedia Appendix 3). The survey took about 10
minutes to complete and was distributed through the end user
organizations of the project. In total, 54 MFR trainers from
8 different MFR organizations across 7 European countries
participated.
Evaluation in Field Trial

Overview
Finally, a field trial was conducted to gather feedback from
end users and observe their interaction with the newly
developed features. In total, 36 MFRs (6 female, 28 male)
and 4 trainers (1 female, 3 male) participated in the field trial.

The MR training setup encompasses a 10 × 10 training
field, allows for teams of up to 4 trainees, and is equipped
with a head-mounted display and trackers placed on the
trainees’ hands, feet, and back. To ensure seamless communi-
cation, trainees and trainers are provided with headphones,
which also facilitate role-playing interactions with dispatch-
ers. The training environment is further enriched with 2
patient simulator manikins [50], which offer a tangible patient
interaction experience. Additionally, a biosignal collection
device [51] is integrated into the system, capturing real-time
ECG and EDA sensor data to monitor trainee physiologi-
cal responses. The current stress level indicator utilizes a
combination of HR and HRV to categorize stress into low,
medium, and high levels. This approach is adapted from a
previous research project about VR training for law enforce-
ment, as described by Zechner et al [52].

After being introduced to the study and signing the
informed consent form, participants filled out a demographic
questionnaire and received an introduction to the MR system
and the task, which involved performing first triage at 2
different MCI sites (1 scenario each). The training was
conducted in teams of 4 with 1 trainer, who also voice-
acted the emergency dispatcher and included the following
scenarios that were conducted in random order.

Scenario 1
Emergency teams in 2 ambulances (2 trainees each) respond
to a bus-car collision on a highway with multiple casualties.
They arrive at the virtual scene after hearing the emergency
call from the dispatcher and receive updates about the
accident’s specifics such as weather conditions and potential
hazards, including a stray dog and a damaged light pole.
The trainees’ tasks involve patient assessment, risk manage-
ment, and clear communication. The exercise concludes with
a detailed situation report to the triage commander.

Scenario 2
In a tunnel-based MR training scenario, emergency medical
teams from 2 ambulances respond to a multivehicle acci-
dent caused by a public transport bus colliding with a car
that had a tire explosion. The accident involves at least 3

cars and the bus, with around 15 passengers. As the sce-
nario unfolds, trainees face additional challenges, including
locating a missing child and managing potential risks from a
gasoline-powered and damaged bus. The exercise concludes
with a detailed situation report to the triage commander.

During 7 training sessions, observations took place,
including checklists for usage of features, reports on
predefined events, time stamps, and open notes, which were
later organized into themes. On the fourth day of the field
trial, all 4 trainers participated in a semistructured interview
(Multimedia Appendix 1).
Statistical Analysis
For training observations, both quantitative and qualitative
analysis were used to analyze data from training observations.
Checklists were analyzed by calculating frequencies and
percentages for each feature usage and event occurrence to
understand their prevalence. Trainer-trainee interactions were
recorded through note-taking and later analyzed by identify-
ing and highlighting significant statements or behaviors and
these were grouped into themes.

Interview data were transcribed and subjected to thematic
analysis [53]. Codes were assigned to significant statements,
which were then grouped into themes to identify common
patterns and insights regarding the usability and effective-
ness of the MR training system. The thematic analysis of
qualitative data was conducted using Atlas.ti.
Ethical Considerations
All studies within the Med1stMR project were approved by
the Karl Ruprecht University of Heidelberg (Antrag AZ Beu
2023 1/1, August 15, 2023).

Results
Phase 1: End User Requirements
End users expect the technology in MR training to be
user-friendly and cost-effective, while improving training
outcomes and safety. They desire a system that is intuitive to
use and operates smoothly to foster broad acceptance within
their organization. They also anticipate that the technology
will be more cost-effective than traditional MCI simulation
training in the long run. MR training is expected to enhance
training outcomes by accommodating more participants,
improving the efficiency of training time, enhancing the
quality of debriefing with detailed and objective information,
and offering the opportunity for trainees to assume different
roles in repeated simulations.

Workshop participants identified key aspects of MCI
training, including scene safety assessment; internal and
external communication; coordination; first and second triage;
trauma assessment and treatment; prioritizing for transport;
and both prehospital and in-hospital MCI management.
Participants underscored the importance of enhancing the
quantity and quality of training with regard to scene safety
assessment; communication and coordination; and triage
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procedures, which are currently lacking in MCI training.
Triage training often relies on paper patients or role-players,
both offering limited realism. Paper patients (paper cards that
list a patient’s injuries and vital signs) reduce the complexity
of the triaging process. Role-players, despite being able to
simulate a victim’s status using make-up and behavioral cues,
are inherently limited in representing patient symptoms. MR
simulations allow MFRs to develop a deeper understanding of
MCI procedures, thus improving preparedness and response
efficacy.

Regarding KPIs, during the end user requirement
collection phase, we gathered 80 performance metrics, of
which 57 where prioritized as high and 56 were selected
for live tracking. After consolidation of items that were
similar enough, a total of 54 performance metrics (42 high
priority and 36 marked for live tracking) remained. With the
aim to reduce this number to a realistic and implementable
workload, all metrics were categorized into the following
KPI groups: 3S (scene, safety, situation); triage perform-
ance; patient assessment and treatment; use of equipment;
communication and coordination; and team performance.

Trainers emphasized that monitoring KPIs in real time
would help them better understand a trainee’s progress and
areas of improvement. In a dynamic training environment,
capturing metrics such as response time, decision accuracy,
status of the patient simulation manikin, and task completion
rate can reveal valuable insights about a trainee’s aptitude
and readiness for real-world scenarios. Real-time perform-
ance monitoring can also facilitate immediate feedback, a
process that can significantly enhance the learning progress
by highlighting areas of strength and those needing improve-
ment promptly after or even during training sessions.

However, not all performance metrics are equally
important in every scenario but rather depend on the specific
training objective. To cover a variety of training goals and
scenarios, a library feature has been requested for the MR
training platform, allowing trainers to select up to 8 KPIs for
real-time monitoring.

Furthermore, it has been highlighted that monitoring team
performance metrics such as task distribution, communica-
tion efficiency, and collaborative decision-making can offer a
comprehensive understanding of team dynamics and synergy,
in addition to individual KPIs [54].

Furthermore, the workshops with end users underscored
a pivotal shift from merely focusing on physical safety to
a more holistic approach that encompasses psychological
well-being. Although MR training reduces physical risks
compared to real-life simulations, the heightened realism
and immersive nature can increase trainee stress. Instructors
should be able to monitor trainees’ stress levels, ideally based
on biosignals, throughout the training exercise.

End users also pointed out the need to identify spe-
cific stressors for MCI scenarios. These stressors can range
from environmental factors (like poor visibility) to opera-
tional challenges (such as resource shortages). One notable
stressor is the condition of the victims in the scenario. Their

health status, both physical and mental, can impact trainee
stress. Therefore, it is essential to detail the victims’ health
trajectory throughout the training, including key physiological
parameters during critical stages.

The visualization of stress levels was a frequently
discussed topic by end users, who considered stress level
monitoring as a must-have feature of the platform but were
concerned about the feature distracting the instructors from
their already-high task load. Showing trainees their own and
colleagues’ stress level was dismissed early in the project
because it would not resemble a real MCI and this was
viewed as critical for privacy reasons.

The following requirements were identified:
• Visibility: Stress levels should be visible only to

trainers to maintain trainees’ immersion.
• Accessibility: Stress levels should be continuously

visible to trainers without active involvement (eg,
mouse clicks).

• Association: It should be easy to link the stress
visualization to the respective trainee’s avatar.

• Interpretability: The visualization should be straightfor-
ward, avoiding complex numerical displays.

• Distraction: The design should ensure the visualization
is noticeable but not distracting.

These insights from the workshops provided valuable
guidance for designing MR MCI training that is both effective
and mindful of trainee well-being. Following the guidance of
experienced trainers, stress level visualization options were
designed and tested with end users through an online survey,
as reported in the next section.
Phase 2: Design and Development

Overview
The design and development phase was the core phase of this
research project and lasted for 14 months. During this time,
prototype tryouts had been organized for end users to test the
current version of the system, monthly consortium meetings
were held to discuss the current status and gather feedback,
and biweekly software developer meetings took place online.

KPI implementation was discussed in software developer
meetings, leading to further refinement of KPI requirements.
Not all KPIs were available in real time, either because they
required manual input from trainers or because data transfer
and processing could only be done offline. Initial usability
testing of the basic prototype, conducted during the design
and development phase, revealed that users found it very
difficult to monitor more than 10 KPIs simultaneously during
training sessions. This finding informed the design adjust-
ments made to ensure the interface remained manageable and
focused for trainers during real-time training. From the 54
performance metrics identified by end users, a subset (Table
1) was prioritized for real-time tracking and display, aiding
trainers in effectively steering the training sessions.

Real-time stress level monitoring was enabled by
wearables and biosignal sensors (Figure 2). After evaluating
various wearables and biosignal sensors, end users preferred a
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chest belt or sticky electrodes, both of which were integra-
ted into the system for further testing (Table 2). Partici-
pants suggested useful biodata sources for real-time stress
measurement, including HR, breathing rate, brain activity,

and galvanic skin response. However, they expressed a
preference for following state-of-the-art methods, acknowl-
edging their lack of expertise in this field.

Table 1. Summary of key performance indicators mapped to training goals.
Metric Description Training goal
Overall timing of scenario Time taken by trainees to make medical decisions and provide an

incident overview
Organize and coordinate work at mass casualty
incident efficiently

3S (scene, safety,
situation) assessment

Evaluation of scene, safety, and situation; identifying and
mitigating environmental risks and hazards

Evaluate and manage the safety and security of the
scene

Trainee stress levels Monitoring the stress levels of trainees during the training to
adjust challenge levels

Effective decision-making capabilities in highly
stressful situations

Communication skills Assessing the clarity and precision of communication among
trainees

Effective team coordination and information
exchange in emergencies

Patient assessment Evaluating the trainees’ ability to assess patients using the
Airway, Breathing, Circulation, Disability, Exposure (ABCDE)
approach

Accurate and timely patient care and prioritization

Time taken to triage Time spent by trainees on triaging each patient Identifying delays in patient assessment and
intervention

Medical task accuracy Accuracy of medical procedures performed (eg, correct applica-
tion of a tourniquet)

Performing medical tasks correctly and efficiently

Figure 2. MED1stMR system description. MR: mixed reality; VR: virtual reality.

Table 2. Summary of requirements for the smart wearables.
Features and needs Notes
Free movement and disturbance-free

Wearables should not impede the trainee’s ability to do their job This requirement is different between the training goals of the training
modules “first arriving ambulance,” first triage, and second triage

Wearables should not be “felt” (eg, tightening of a blood pressure
cuff)

To allow immersion in the simulation world and not distract trainees

Wearable form
Form follows function. Potential wearable forms include a wristband,
watch, suit, vest, or shirt.

The participants were open to various forms that the smart wearable
could take, whichever would make it easiest to measure the needed
biodata streams

Not too many wearables (ideally 1 integrated wearable) The trainees do not want to wear ≥4 wearables
Measurement

Stress level Stress was noted as the most important measure
Situational awareness Situational awareness was mentioned as a “nice-to-have” measurement
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Design Preferences of Stress Level Indicator
(Online Survey)
Results of the design survey clarified visualization preferen-
ces of end users and helped technical development teams
implement the various visualizations.

Respondents provided feedback on five different real-time
stress level indicators in the VR view (Figure 3): (1) circle,
(2) aura, (3) belt, (4) battery, and (5) triangle, which were
displayed in random order.

The highest overall preference was indicated for the circle,
ranked as most preferred by 12 participants (55%), followed
by the triangle with 4 participants (18%), icon and aura with 3

participants each (14%), and no participants indicated the belt
as the most preferred option.

For the side panel (Figure 4), we wanted to know what
color scheme trainers preferred to indicate trainee’s current
stress levels. The traffic light scheme was considered more
appropriate (22 participants, 65%) than the heat map style (12
participants, 35%). Regarding the graph type, the majority of
participants found horizontal bars easy to read and inter-
pret (18 participants, 55%) compared to a gauge type (16
participants, 48%) and vertical bars (10 participants, 30%).

Based on the survey results, a stress visualization interface
was created (Figure 4).

Figure 3. Five examples of real-time stress visualizations presented to end users. A: circle; B: aura; C: belt; D: battery; E: triangle.

Figure 4. Trainer view of the mixed reality interface (left: view of the virtual environment; right: real-time performance monitoring).

Phase 3: Evaluation in Field Trial
During the field trial, training observations of 7 training
sessions took place. Each session consisted of 4 trainees
who went through an introductory scenario to get familiar
with the MR system, followed by 2 training scenarios and a
debriefing. On the last day of the field trial, semistructured
interviews were conducted with 4 trainers to gather insights
on the real-time performance metrics and their utility during
MR training (Figure 5).

During the training sessions, our observations revealed
a consistent utilization pattern of performance evaluation
features by trainers. All trainers routinely accessed the feature
that allowed them to verify which triage card was assigned
to each patient and if it matched with the recommended card.
This feature was particularly popular toward the end of the
scenario, ensuring that all patients had been triaged appropri-
ately.
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Although minor corrections were occasionally given
to trainees between scenarios, comprehensive performance
feedback was reserved for the posttraining debriefing
sessions. This approach emphasized the importance of
performance metrics during debriefings rather than real-time
interactions during training. However, the recorded real-time
tracking of KPIs was consistently used in every debriefing
session. Spanning approximately 20 minutes, these sessions
highlighted the KPI tracking feature as an invaluable tool, a
sentiment echoed by the trainees.

Each trainer had conducted at least 3 training sessions
before the semistructured posttraining interviews.

Trainers identified the following as the most crucial
real-time performance metrics in MR training:

• Overall timing of scenario: all medical decisions should
be made within 10 minutes (depending on the number
of casualties) and trainees should be able to give the
dispatcher an overview of how many red, yellow, green,
and black patients are at the incident site

• 3S (scene, safety, situation) assessment (ie, identify,
communicate, and reduce any potential environmental
risks or hazards)

• Trainee stress levels (allows trainers to intervene if
trainees appear not challenged enough)

• Communication (clear and precise)
• Patient assessment and triage decision (Airway,

Breathing, Circulation, Disability, Exposure approach
to assess and treat the patient)

• Time taken to triage (aids in intervention if trainees
spend excessive time on a single patient)

• Medical task accuracy (eg, application of a tourniquet)
Although trainers emphasized limiting the instructions given
during simulation training, they acknowledged the automated
tracking’s value. It provided a rapid overview of the number
of patients triaged, the accuracy of triage, and the specific
trainee responsible. The “time to triage” metric was particu-
larly beneficial, enabling trainers to prompt trainees (eg, by
requesting a status update via dispatcher radio) when they
took too long.

All trainers reported frequently consulting the circle under
the avatar to check trainees’ stress levels and claimed to have
had a good overview at all times throughout the training.

For subsequent updates, trainers expressed a desire for
enhanced interactivity options to modulate trainee stress
levels. This could be achieved through (1) patient simula-
tors and nonplayer characters with adjustable parameters like
pulse and breath rate or (2) the ability to introduce audiovi-
sual stress cues ad hoc. Furthermore, more time in the tutorial
scenario was requested, to give trainees the chance to test
all features at least once and get familiar with the virtual
environment and how to interact with patient avatars. They
reported that it was sometimes not clear if a trainee struggled
because of the MR technology or their skills and knowledge,
which is relevant when evaluating their performance.

Figure 5. MED1stMR field trial to evaluate features of the mixed reality training platform. A: patient simulator manikin; B: trainer station; C: tunnel
scenario in VR view. VR: virtual reality.

Discussion
Principal Findings
This research aims to enhance MR training for MFRs
by addressing key research questions. First, we identified
crucial performance metrics, such as scene safety assess-
ment, communication efficiency, triage accuracy, and patient
management, which enabled trainers to effectively engage
with and mentor MFR trainees. Second, we integrated a stress
level indicator into the MR training platform using real-time

biosignal analysis, allowing trainers to monitor trainees’
current stress levels during the training session.

Incorporating a performance monitoring tool emerged as
a high-priority request from MFR organizations during the
requirement collection phase. The integration of KPIs into
MR training provides a structured and measurable approach
to evaluating trainee performance and supports trainers in
the debriefing process. End users consider this a significant
advancement over traditional methods, which often lack
objective performance metrics. Literature [27,54] suggests
that the inclusion of real-time performance indicators
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can significantly enhance learning outcomes by providing
immediate feedback and enabling targeted interventions. Our
study extends this knowledge by demonstrating the practical
application of KPIs in MR training, with trainers identify-
ing key metrics such as overall timing, 3S assessment,
and communication skills as crucial for effective training.
Although most KPIs appeared highly important during the
requirements collection phase, field trials led to a refined
focus on actionable and timekeeper metrics for display in real
time. Other KPIs were deemed more suitable for posttraining
debriefings. This shift in priorities underscores the evolving
understanding of KPI relevance as trainers gain hands-on
experience with the MR platform. Although MR technology
offers a seemingly rich array of tracking possibilities, the key
lies in selecting and translating the most impactful KPIs to
ensure effective engagement and mentoring of MFR trainees.

Both trainers and trainees appreciated features incorpora-
ted into the virtual environment that provided immediate
feedback, such as the cessation of bleeding only when a
tourniquet is correctly applied. Such immediate feedback
mechanisms enhance the training experience by providing
real-time validation or correction while fostering a more
immersive and instructive environment.

The capability to repeat scenarios multiple times in MR
training has been highlighted as a significant advantage over
traditional real-world simulation training because it allows
trainees to refine their skills through practice [55]. Enhancing
MR training platforms with real-time performance monitoring
further empowers trainers with the ability to adjust scenar-
ios on the fly based on the actual performance of trainees.
This dynamic adaptability ensures that training sessions are
not only more efficient but also personalized to meet the
unique needs and skill levels of individual trainees. Real-time
monitoring provides trainers with immediate insights into
trainees’ performance, enabling them to tailor scenarios to
challenge and develop specific competencies.

The inclusion of stress level monitoring in our MR training
platform addresses a critical gap in traditional MCI training
methods, which often overlook the psychological well-being
of trainees. Previous research has highlighted the impact of
stress on decision-making and performance in emergency
scenarios [34]. A stress level indicator can be seamlessly
integrated into the MR training platform by using biosignals
for real-time monitoring through wearable sensors, such as
chest belts, sticky electrodes, or watches [41]. The stress
level indicator should be visible only to trainers, contin-
uously accessible without active interaction, easily associ-
ated with trainees’ avatars, straightforward to interpret, and
designed to be noticeable without being distracting. The
preferred indicator, as per user feedback, is a simple and
easy-to-interpret visual element, like a circle attached to the
trainee’s avatar with 3 stress level thresholds (low=green,
medium=yellow, high=red).

Displaying real-time stress levels was regarded as a
highly valuable and innovative feature of MR simulation
training. For trainers, it enables quicker identification of
whether a trainee is overwhelmed or underengaged, allowing

for immediate intervention, thus maximizing the efficiency
of training time. For trainees, this ensures their safety
and psychological well-being, while also fostering opti-
mal training environments that are conductive to effective
learning and skill development.

In this research, a relatively simple stress model was
used [52], calculating a combination of HR and HRV and
categorizing the results into 3 groups: low, medium, and
high. Our focus was on visualization and interface integra-
tion, as this was a major concern of our end users and
the current literature showed a noticeable gap regarding
the detailed exploration of these aspects. However, more
comprehensive and robust models for stress assessment are
documented in existing research [38,56]. These models often
adopt a multimodal approach, incorporating measurements
like ECG-related features and EDA [36].

Regarding stress level visualization, while no specific
research was found on techniques for conveying stress levels
to third-party observers (eg, trainers) in MR, our approach
drew inspiration from biofeedback [57], biosignal visualiza-
tion methods [58], and social biofeedback systems outside the
MR domain [43].
Strengths and Limitations
A key strength of this research lies in its user-centered design
process and the evaluation of MR training in real-life training
settings. Engaging end users and trainers throughout the
project allowed us to tailor the system to the specific needs
and challenges faced by MFRs. By conducting field trials
and workshops with professionals from various European
countries, the study provided actionable insights into how
MR training can enhance skill development. Additionally, the
iterative feedback from trainers was instrumental in refining
performance metrics and the user interface, ensuring the
training system’s practicality and relevance to real-world
scenarios.

However, this research also has several limitations. First,
there may be a selection bias since the end users and trainers
involved were volunteers rather than randomly selected
participants. Although we attempted to mitigate this by
recruiting a diverse group from multiple European countries,
the sample may still not fully represent the broader population
of MFRs. This limitation may influence the generalizability
of our findings. Future research should consider a randomized
participant selection process to improve representativeness
and enhance the validity of the results.

Second, the relatively small sample size of trainers and
trainees in the field trial limits the generalizability of the
findings. Although the study provided valuable insights, the
experiences observed may not reflect those of a larger, more
diverse group of MFRs. To address this limitation, future
studies should aim to include a larger sample size, which
would offer more robust and widely applicable insights.

Third, integrating MR training into existing curricula
requires further investigation to understand how this
technology can be effectively adopted within current
emergency response frameworks. Although this study focused
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on developing and refining the MR training system,
future research should explore best practices for curricu-
lum integration and acceptance within emergency response
training programs.

Last, the current assumption that including perform-
ance metrics and stress level monitoring in MR training
will improve learning outcomes and transfer to real-world
MCIs is mainly based on existing literature and the
experiences of trainers and subject matter experts. This
could have influenced the study’s approach and conclu-
sions. To evaluate the sustained impact of these inter-
ventions, a longitudinal study is recommended. Tracking
trainees over time would provide a more comprehensive
understanding of the long-term benefits and applicability of
MR training in real-world situations.

Despite these limitations, the study lays a solid founda-
tion for future research by providing initial insights into the
effectiveness of MR training for MFRs and identifying areas
for further development.
Future Directions
Future studies should address these limitations by includ-
ing a more diverse participant pool, a larger sample size
of trainers, and a comprehensive evaluation of curriculum
integration strategies. Restricted by the limited resources of
this research project, only a small selection of KPI analysis
and display was automated; in future work, more sophistica-
ted and automated methods for tracking and evaluating KPIs
should be investigated. This includes the development of
digital checklists and enhanced data integration systems to
facilitate continuous training progress and provide trainers
with more robust tools for assessment.

ML algorithms have the potential to significantly improve
data processing and pattern recognition in this context.
Supervised learning models, such as linear regression,
decision trees, and support vector machines, can be trained
on historical data to predict KPIs or stress levels [59]. Once
trained, these models can provide statistical insights for
debriefings or offer direct feedback to trainees based on their
performance relative to predicted KPIs.

Unsupervised learning models, such as clustering
algorithms like k-means or hierarchical clustering, can be
used to group similar performance data together. This can
help identify common characteristics of high-performing
trainees, which can then be used to better train other trainees
[60]. To provide real-time feedback to trainees, reinforcement
learning can be used. The model learns to make decisions
based on the reward (or penalty) it receives for its actions,
which can be tied to the KPIs. For example, a reinforcement

learning model could be used in a training simulation to
provide feedback to trainees based on their actions [61].

Deep learning models can be used to analyze more
complex patterns in KPI data. For example, recurrent neural
networks are great tools to analyze time-series data, while
convolutional neural networks can analyze image or video-
based KPI data, potentially supporting video analysis during
the debriefing of the training [62]. Current challenges in
automating the analysis of qualitative data, such as communi-
cation and team performance, could be overcome in the future
by using natural language processing models, which can
identify key themes and sentiments in speech-to-text–based
data [63]. In our current research, we are investigating the
feasibility of the abovementioned machine learning models to
test their application in MR training and will report results in
future research.

An example, showcasing the power of reinforcement
learning to adapt virtual scenarios based on trainee per-
formance, has been provided by the research group devel-
oping Unity’s Machine Learning Agents toolkit [64]. This
open-source tool was originally developed to create game-
based training environments for training intelligent agents.
However, in the context of our research, it could potentially
be used to develop a smart trainer assistant that adapts virtual
scenarios based on continuous trainee performance analysis.

Furthermore, real-time training analysis opens up new
possibilities for scenario adaptation and the development
of more personalized training guidelines. Future work will
explore these avenues and focus on the development of smart
scenario control features supported by advanced machine
learning methods.
Conclusions
In conclusion, this research addresses important gaps in
immersive simulation training for MFRs by integrating
real-time performance metrics and stress level indicators into
MR systems. This innovative approach enhances training
by providing objective, actionable insights for both trainers
and trainees, emphasizing the crucial role of performance
evaluation and stress management in emergency response
scenarios. Additionally, the study presents insights into user
preferences for stress visualization, highlighting the need for
intuitive and user-friendly interfaces. The human-centered
design methodology ensures these enhancements align closely
with end user requirements. The methodologies and design
considerations outlined in this work can serve as a framework
for developing interactive and immersive training environ-
ments across various high-stress fields, contributing to more
effective, efficient, and user-focused training solutions.
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